If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5b^2=63
We move all terms to the left:
5b^2-(63)=0
a = 5; b = 0; c = -63;
Δ = b2-4ac
Δ = 02-4·5·(-63)
Δ = 1260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1260}=\sqrt{36*35}=\sqrt{36}*\sqrt{35}=6\sqrt{35}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{35}}{2*5}=\frac{0-6\sqrt{35}}{10} =-\frac{6\sqrt{35}}{10} =-\frac{3\sqrt{35}}{5} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{35}}{2*5}=\frac{0+6\sqrt{35}}{10} =\frac{6\sqrt{35}}{10} =\frac{3\sqrt{35}}{5} $
| 20k−16k=8 | | 5x+8+36+4=-40+4 | | 14+20=c+14 | | 2x-4(7x-2)=5 | | Y=5x-40x+120 | | A+j=425 | | 4(x+2)+3x=15 | | 216=w*w*6 | | x-8.49=9.54 | | 46=w+w+w+3+w+3 | | 6c−5c=7 | | 46=w+w+w+3+ | | 6b−5b=10 | | 7q−5q=10 | | 3w-14=44 | | 2r+6=24-r | | 2k+17=18k-31 | | -(2x+2)=2(2+3x) | | 7b+8=8b | | 9x+18=x+98 | | s4+ 14=16 | | -2(-2y+3)-(5y-6)-2y+5=0 | | 7=3d−2 | | 6+2x=7x-1 | | 0.25n=2.5 | | 8x-12=15x+4 | | 2(n+8n)=4 | | 2b+8=4b-4 | | (12+x)3/4=27 | | x=58=180 | | 4(t+67)=16 | | 9(w+7)=99 |